
pyspotify
Release 2.1.4

unknown

Aug 09, 2022

CONTENTS

1 WARNING: This library no longer works 1

2 Introduction 3

3 Project resources 5

4 User’s guide 7
4.1 Installation . 7
4.2 Quickstart . 10

5 API reference 21
5.1 API reference . 21

6 About 37
6.1 Authors . 37
6.2 Changelog . 37
6.3 Contributing . 46

Python Module Index 49

Index 51

i

ii

CHAPTER

ONE

WARNING: THIS LIBRARY NO LONGER WORKS

pyspotify is a Python wrapper around the libspotify C library, and thus depends on libspotify for everything it does.

In May 2015, libspotify was deprecated by Spotify and active maintenance stopped. At this point, libspotify had been
the main way to integrate with Spotify for six years, and was part of numerous open source projects and commercial
applications, including many receivers and even cars. It remained the only API for playback outside Android and iOS.

In February 2016, server side changes to the Spotify API caused the search functionality to stop working, without
Spotify ever acknowledging it. Users of pyspotify could work around this by using the Spotify web API for searches
and pyspotify for playback.

In April 2022, Spotify announced that they would sunset the libspotify API one month later.

In May 2022, new libspotify connections to Spotify started failing. With libspotify dead, pyspotify was dead too.

After two years in development from May 2013 to May 2015, and seven years of loyal service this project has reached
its end.

There will be no further updates to pyspotify.

Hopefully, the pyspotify source code can still serve as a complete example of how to successfully wrap a large C library
in Python using CFFI.

1

https://developer.spotify.com/community/news/2022/04/12/libspotify-sunset/

pyspotify, Release 2.1.4

2 Chapter 1. WARNING: This library no longer works

CHAPTER

TWO

INTRODUCTION

pyspotify provides a Python interface to Spotify’s online music streaming service.

With pyspotify you can access music metadata, search in Spotify’s library of 20+ million tracks, manage your Spotify
playlists, and play music from Spotify. All from your own Python applications.

pyspotify uses CFFI to make a pure Python wrapper around the official libspotify library. It works on CPython 2.7 and
3.5+, as well as PyPy 2.7 and 3.5+. It is known to work on Linux and macOS. Windows support should be possible,
but is awaiting a contributor with the interest and knowledge to maintain it.

3

https://www.spotify.com/
https://cffi.readthedocs.io/

pyspotify, Release 2.1.4

4 Chapter 2. Introduction

CHAPTER

THREE

PROJECT RESOURCES

• Documentation

• Source code

• Issue tracker

5

https://pyspotify.readthedocs.io/
https://github.com/jodal/pyspotify
https://github.com/jodal/pyspotify/issues
https://pypi.org/project/pyspotify/
https://github.com/jodal/pyspotify/actions?workflow=CI
https://pyspotify.readthedocs.io/
https://codecov.io/gh/jodal/pyspotify

pyspotify, Release 2.1.4

6 Chapter 3. Project resources

CHAPTER

FOUR

USER’S GUIDE

4.1 Installation

pyspotify is packaged for various operating systems and in multiple Linux distributions. What way to install pyspotify
is best for you depends upon your OS and/or distribution.

4.1.1 Debian/Ubuntu: Install from apt.mopidy.com

The Mopidy project runs its own APT archive which includes pyspotify built for:

• Debian 9 (Stretch), which also works for Ubuntu 18.04 LTS.

• Debian 10 (Buster), which also works for Ubuntu 19.10 and newer.

The packages are available for multiple CPU architectures: i386, amd64, armel, and armhf (compatible with Raspbian
and all Raspberry Pi models).

To install and receive future updates:

1. Add the archive’s GPG key:

wget -q -O - https://apt.mopidy.com/mopidy.gpg | sudo apt-key add -

2. If you run Debian stretch or Ubuntu 16.04 LTS:

sudo wget -q -O /etc/apt/sources.list.d/mopidy.list https://apt.mopidy.com/stretch.
→˓list

Or, if you run any newer Debian/Ubuntu distro:

sudo wget -q -O /etc/apt/sources.list.d/mopidy.list https://apt.mopidy.com/buster.
→˓list

3. Install pyspotify and all dependencies:

sudo apt-get update
sudo apt-get install python-spotify

7

https://mopidy.com/

pyspotify, Release 2.1.4

4.1.2 Arch Linux: Install from AUR

If you are running Arch Linux on x86 or x86_64, you can install pyspotify using the python2-pyspotify package found
in AUR.

1. To install pyspotify with all dependencies, run:

yay -S python2-pyspotify

Note: AUR does not provide libspotify for all CPU architectures e.g. arm. See installing from source in these cases.

4.1.3 macOS: Install wheel package from PyPI with pip

From PyPI, you can install precompiled wheel packages of pyspotify that bundle libspotify. The packages should work
on all combinations of:

• macOS 10.6 and newer

• 32-bit and 64-bit

• Apple-Python, Python.org-Python, Homebrew-Python

1. Make sure you have a recent version of pip, which will default to installing a wheel package if available:

pip install --upgrade pip

2. Install pyspotify:

pip install pyspotify

4.1.4 macOS: Install from Homebrew

The Mopidy project maintains its own Homebrew tap which includes pyspotify and its dependencies.

1. Install Homebrew.

2. Make sure your installation is up to date:

brew update
brew upgrade --all

3. Install pyspotify from the mopidy/mopidy tap:

brew install mopidy/mopidy/pyspotify

8 Chapter 4. User’s guide

https://aur.archlinux.org/packages/python2-pyspotify/
https://mopidy.com/
https://github.com/mopidy/homebrew-mopidy
http://brew.sh/

pyspotify, Release 2.1.4

4.1.5 Install from source

If you are on Linux, but your distro don’t package pyspotify, you can install pyspotify from PyPI using the pip installer.
However, since pyspotify is a Python wrapper around the libspotify library, pyspotify necessarily depends on libspotify
and it must be installed first.

libspotify

libspotify is provided as a binary download for a selection of operating systems and CPU architectures from our unof-
ficial libspotify archive. If libspotify isn’t available for your OS or architecture, then you’re out of luck and can’t use
pyspotify either.

To install libspotify, use one of the options below, or follow the instructions in the README file of the libspotify
tarball.

Debian/Ubuntu

If you’re running a Debian-based Linux distribution, like Ubuntu, you can get Debian packages of libspotify from
apt.mopidy.com. Follow the instructions above to make the apt.mopidy.com archive available on your system, then
install libspotify:

sudo apt-get install libspotify-dev

Arch Linux

libspotify for x86 and x86_64 is packaged in AUR. To install libspotify, run:

yay -S libspotify

Note: AUR only provides libspotify binaries for x86 and x86_64 CPUs. If you require libspotify for a different CPU
architecture you’ll need to download it from our unofficial libspotify archive instead.

macOS

If you’re using Homebrew, it has a formula for libspotify in the mopidy/mopidy tap:

brew install mopidy/mopidy/libspotify

Build tools

To build pyspotify, you need a C compiler, Python development headers, and libffi development headers. All of this is
easily installed using your system’s package manager.

4.1. Installation 9

https://mopidy.github.io/libspotify-archive/
https://mopidy.github.io/libspotify-archive/
https://apt.mopidy.com/
https://aur.archlinux.org/packages/libspotify/
https://mopidy.github.io/libspotify-archive/
http://brew.sh/

pyspotify, Release 2.1.4

Debian/Ubuntu

If you’re on a Debian-based system, you can install the pyspotify build dependencies by running:

sudo apt install build-essential python-dev python3-dev libffi-dev

Arch Linux

If you’re on Arch Linux, you can install the pyspotify build dependencies by running:

sudo pacman -S base-devel python2 python

macOS

If you’re on macOS, you’ll need to install the Xcode command line developer tools. Even if you’ve already installed
Xcode from the App Store, e.g. to get Homebrew working, you should run this command:

xcode-select --install

Note: If you get an error about ffi.h not being found when installing the cffi Python package, try running the above
command.

pyspotify

With libspotify and the build tools in place, you can finally build pyspotify.

To download and build pyspotify from PyPI, run:

pip install pyspotify

Or, if you have a checkout of the pyspotify git repo, run:

pip install -e path/to/my/pyspotify/git/clone

Once you have pyspotify installed, you should head over to Quickstart for a short introduction to pyspotify.

4.2 Quickstart

This guide will quickly introduce you to some of the core features of pyspotify. It assumes that you’ve already installed
pyspotify. If you do not, check out Installation. For a complete reference of what pyspotify provides, refer to the API
reference.

10 Chapter 4. User’s guide

pyspotify, Release 2.1.4

4.2.1 Application keys

Every app that use libspotify needs its own libspotify application key. Application keys can be obtained automatically
and free of charge from Spotify.

1. Go to the Spotify developer pages and login using your Spotify account.

2. Find the libspotify application keys management page and request an application key for your application.

3. Once the key is issued, download the “binary” version. The “C code” version of the key will not work with
pyspotify.

4. If you place the application key in the same directory as your application’s main Python file, pyspotify will
automatically find it and use it. If you want to keep the application key in another location, you’ll need to set
application_key in your session config or call load_application_key_file() to load the session key file
correctly.

4.2.2 Creating a session

Once pyspotify is installed and the application key is in place, we can start writing some Python code. Almost everything
in pyspotify requires a Session, so we’ll start with creating a session with the default config:

>>> import spotify
>>> session = spotify.Session()

All config must be done before the session is created. Thus, if you need to change any config to something else than
the default, you must create a Config object first, and then pass it to the session:

>>> import spotify
>>> config = spotify.Config()
>>> config.user_agent = 'My awesome Spotify client'
>>> config.tracefile = b'/tmp/libspotify-trace.log'
>>> session = spotify.Session(config)

4.2.3 Text encoding

libspotify encodes all text as UTF-8. pyspotify converts the UTF-8 bytestrings to Unicode strings before returning them
to you, so you don’t have to be worried about text encoding.

Similarly, pyspotify will convert any string you give it from Unicode to UTF-8 encoded bytestrings before passing them
on to libspotify. The only exception is file system paths, like tracefile above, which is passed directly to libspotify.
This is in case you have a file system which doesn’t use UTF-8 encoding for file names.

4.2.4 Login and event processing

With a session we can do a few things, like creating objects from Spotify URIs:

>>> import spotify
>>> session = spotify.Session()
>>> album = session.get_album('spotify:album:0XHpO9qTpqJJQwa2zFxAAE')
>>> album
Album(u'spotify:album:0XHpO9qTpqJJQwa2zFxAAE')
>>> album.link

(continues on next page)

4.2. Quickstart 11

https://developer.spotify.com/
https://developer.spotify.com/technologies/libspotify/keys/

pyspotify, Release 2.1.4

(continued from previous page)

Link(u'spotify:album:0XHpO9qTpqJJQwa2zFxAAE')
>>> album.link.uri
u'spotify:album:0XHpO9qTpqJJQwa2zFxAAE'

But that’s mostly how far you get with a fresh session. To do more, you need to login to the Spotify service using a
Spotify account with the Premium subscription.

Warning: pyspotify and all other libspotify applications required a Spotify Premium subscription.

The Free Spotify subscription, or the old Unlimited subscription, will not work with pyspotify or any other appli-
cations using libspotify.

>>> import spotify
>>> session = spotify.Session()
>>> session.login('alice', 's3cretpassword')

For alternative ways to login, refer to the login() documentation.

The login()method is asynchronous, so we must ask the session to process_events() until the login has succeeded
or failed:

>>> session.connection.state
<ConnectionState.LOGGED_OUT: 0>
>>> session.process_events()
>>> session.connection.state
<ConnectionState.OFFLINE: 1>
>>> session.process_events()
>>> session.connection.state
<ConnectionState.LOGGED_IN: 1>

Note: The connection state is a representation of both your authentication state and your offline mode. If libspotify
has cached your user object from a previous session, it may authenticate you without a connection to Spotify’s servers.
Thus, you may very well be logged in, but still offline.

The connection state in the above example goes from the LOGGED_OUT state, to OFFLINE, to LOGGED_IN. If libspotify
hasn’t cached any information about your Spotify user account, the connection state will probably go directly from
LOGGED_OUT to LOGGED_IN. Your application should be prepared for this.

For more details, see the session.connection.state documentation.

We only called process_events() twice, which may not be enough to get to the LOGGED_IN connection state. A
more robust solution is to call it repeatedly until the CONNECTION_STATE_UPDATED event is emitted on the Session
object and session.connection.state is LOGGED_IN:

>>> import threading
>>> logged_in_event = threading.Event()
>>> def connection_state_listener(session):
... if session.connection.state is spotify.ConnectionState.LOGGED_IN:
... logged_in_event.set()
...
>>> session = spotify.Session()

(continues on next page)

12 Chapter 4. User’s guide

pyspotify, Release 2.1.4

(continued from previous page)

>>> session.on(
... spotify.SessionEvent.CONNECTION_STATE_UPDATED,
... connection_state_listener)
...
>>> session.login('alice', 's3cretpassword')
>>> session.connection.state
<ConnectionState.LOGGED_OUT: 0>
>>> while not logged_in_event.wait(0.1):
... session.process_events()
...
>>> session.connection.state
<ConnectionState.LOGGED_IN: 1>
>>> session.user
User(u'spotify:user:alice')

This solution works properly, but is a bit tedious. pyspotify provides an EventLoop helper thread that can make the
process_events() calls in the background. With it running, we can simplify the login process:

>>> import threading
>>> logged_in_event = threading.Event()
>>> def connection_state_listener(session):
... if session.connection.state is spotify.ConnectionState.LOGGED_IN:
... logged_in_event.set()
...
>>> session = spotify.Session()
>>> loop = spotify.EventLoop(session)
>>> loop.start()
>>> session.on(
... spotify.SessionEvent.CONNECTION_STATE_UPDATED,
... connection_state_listener)
...
>>> session.connection.state
<ConnectionState.LOGGED_OUT: 0>
>>> session.login('alice', 's3cretpassword')
>>> session.connection.state
<ConnectionState.OFFLINE: 4>
>>> logged_in_event.wait()
>>> session.connection.state
<ConnectionState.LOGGED_IN: 1>
>>> session.user
User(u'spotify:user:alice')

Note that when using EventLoop, your event listener functions are called from the EventLoop thread, and not from
your main thread. You may need to add synchronization primitives to protect your application code from threading
issues.

4.2. Quickstart 13

pyspotify, Release 2.1.4

4.2.5 Logging

pyspotify uses Python’s standard logging module for logging. All log records emitted by pyspotify are issued to the
logger named spotify, or a sublogger of it.

Out of the box, pyspotify is set up with logging.NullHandler as the only log record handler. This is the recom-
mended approach for logging in libraries, so that the application developer using the library will have full control over
how the log records from the library will be exposed to the application’s users. In other words, if you want to see the
log records from pyspotify anywhere, you need to add a useful handler to the root logger or the logger named spotify
to get any log output from pyspotify. The defaults provided by logging.basicConfig() is enough to get debug log
statements out of pyspotify:

import logging
logging.basicConfig(level=logging.DEBUG)

If your application is already using logging, and you want debug log output from your own application, but not from
pyspotify, you can ignore debug log messages from pyspotify by increasing the threshold on the “spotify” logger to
“info” level or higher:

import logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger('spotify').setLevel(logging.INFO)

For more details on how to use logging, please refer to the Python standard library documentation.

If we turn on logging, the login process is a bit more informative:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)
>>> import spotify
>>> session = spotify.Session()
>>> session.login('alice', 's3cretpassword')
DEBUG:spotify.session:Notify main thread
DEBUG:spotify.session:Log message from Spotify: 19:15:54.829 I [ap:1752] Connecting to␣
→˓AP ap.spotify.com:4070
DEBUG:spotify.session:Log message from Spotify: 19:15:54.862 I [ap:1226] Connected to␣
→˓AP: 78.31.12.11:4070
>>> session.process_events()
DEBUG:spotify.session:Notify main thread
DEBUG:spotify.session:Log message from Spotify: 19:17:27.972 E [session:926] Not all␣
→˓tracks cached
INFO:spotify.session:Logged in
DEBUG:spotify.session:Credentials blob updated: 'NfFEO...'
DEBUG:spotify.session:Connection state updated
43
>>> session.user
User(u'spotify:user:alice')

14 Chapter 4. User’s guide

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.handlers.html#logging.NullHandler
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging

pyspotify, Release 2.1.4

4.2.6 Browsing metadata

When we’re logged in, the objects we created from Spotify URIs becomes a lot more interesting:

>>> album = session.get_album('spotify:album:0XHpO9qTpqJJQwa2zFxAAE')

If the object isn’t loaded, you can call load() to block until the object is loaded with data:

>>> album.is_loaded
False
>>> album.name is None
True
>>> album.load()
Album('spotify:album:0XHpO9qTpqJJQwa2zFxAAE')
>>> album.name
u'Reach For Glory'
>>> album.artist
Artist(u'spotify:artist:4kjWnaLfIRcLJ1Dy4Wr6tY')
>>> album.artist.load().name
u'Blackmill'

The Album object give you the most basic information about an album. For more metadata, you can call browse() to
get an AlbumBrowser:

>>> browser = album.browse()

The browser also needs to load data, but once its loaded, most related objects are in place with data as well:

>>> browser.load()
AlbumBrowser(u'spotify:album:0XHpO9qTpqJJQwa2zFxAAE')
>>> browser.copyrights
[u'2011 Blackmill']
>>> browser.tracks
[Track(u'spotify:track:4FXj4ZKMO2dSkqiAhV7L8t'),
Track(u'spotify:track:1sYClIlZZsL6dVMVTxCYRm'),
Track(u'spotify:track:1uY4O332HuqLIcSSJlg4NX'),
Track(u'spotify:track:58qbTrCRGyjF9tnjvHDqAD'),
Track(u'spotify:track:3RZzg8yZs5HaRjQiDiBIsV'),
Track(u'spotify:track:4jIzCryeLdBgE671gdQ6QD'),
Track(u'spotify:track:4JNpKcFjVFYIzt1D95dmi0'),
Track(u'spotify:track:7wAtUSgh6wN5ZmuPRRXHyL'),
Track(u'spotify:track:7HYOVVLd5XnfY4yyV5Neke'),
Track(u'spotify:track:2YfVXi6dTux0x8KkWeZdd3'),
Track(u'spotify:track:6HPKugiH3p0pUJBNgUQoou')]
>>> [(t.index, t.name, t.duration // 1000) for t in browser.tracks]
[(1, u'Evil Beauty', 228),
(2, u'City Lights', 299),
(3, u'A Reach For Glory', 254),
(4, u'Relentless', 194),
(5, u'In The Night Of Wilderness', 327),
(6, u"Journey's End", 296),
(7, u'Oh Miah', 333),
(8, u'Flesh and Bones', 276),
(9, u'Sacred River', 266),

(continues on next page)

4.2. Quickstart 15

pyspotify, Release 2.1.4

(continued from previous page)

(10, u'Rain', 359),
(11, u'As Time Goes By', 97)]

4.2.7 Downloading cover art

While we’re at it, let’s do something a bit more impressive; getting cover art:

>>> cover = album.cover(spotify.ImageSize.LARGE)
>>> cover.load()
Image(u'spotify:image:16eaba4959d5d97e8c0ca04289e0b1baaefae55f')

Currently, all covers are in JPEG format:

>>> cover.format
<ImageFormat.JPEG: 0>

The Image object gives access to the raw JPEG data:

>>> len(cover.data)
37204
>>> cover.data[:20]
'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x01\x00H\x00H\x00\x00'

For convenience, it also provides the same data encoded as a data: URI for easy embedding into HTML documents:

>>> len(cover.data_uri)
49631
>>> cover.data_uri[:60]
u''

If you’re following along, you can try writing the image data out to files and inspect the result yourself:

>>> open('/tmp/cover.jpg', 'w+').write(cover.data)
>>> open('/tmp/cover.html', 'w+').write('' % cover.data_uri)

4.2.8 Searching

Warning: The search API was broken at 2016-02-03 by a server-side change made by Spotify. The functionality
was never restored.

Please use the Spotify Web API to perform searches.

If you don’t have the URI to a Spotify object, another way to get started is to search():

>>> search = session.search('massive attack')
>>> search.load()
Search(u'spotify:search:massive+attack')

A search returns lists of matching artists, albums, tracks, and playlists:

16 Chapter 4. User’s guide

pyspotify, Release 2.1.4

>>> (search.artist_total, search.album_total, search.track_total, track.playlist_total)
(5, 50, 564, 125)
>>> search.artists[0].load().name
u'Massive Attack'
>>> [a.load().name for a in search.artists[:3]]
[u'Massive Attack',
u'Kwanzaa Posse feat. Massive Attack',
u'Massive Attack Vs. Mad Professor']

Only the first 20 items in each list are returned by default:

>>> len(search.artists)
5
>>> len(search.tracks)
20

The Search object can help you with getting more() results from the same query:

>>> search2 = search.more().load()
>>> len(search2.artists)
0
>>> len(search2.tracks)
20
>>> search.track_offset
0
>>> search.tracks[0]
Track(u'spotify:track:67Hna13dNDkZvBpTXRIaOJ')
>>> search2.track_offset
20
>>> search2.tracks[0]
Track(u'spotify:track:3kKVqFF4pv4EXeQe428zl2')

You can also do searches where Spotify tries to figure out what you mean based on popularity, etc. instead of exact
token matches:

>>> search = session.search('mas').load()
Search(u'spotify:search:mas')
>>> search.artists[0].load().name
u'X-Mas Allstars'

>>> search = session.search('mas', search_type=spotify.SearchType.SUGGEST).load()
Search(u'spotify:search:mas')
>>> search.artists[0].load().name
u'Massive Attack'

4.2. Quickstart 17

pyspotify, Release 2.1.4

4.2.9 Playlist management

Warning: The playlists API was broken at 2018-05-24 by a server-side change made by Spotify. The functionality
was never restored.

Please use the Spotify Web API to work with playlists.

Another way to find some music is to use your Spotify Playlist, which can be found in playlist_container:

>>> len(session.playlist_container)
53
>>> playlist = session.playlist_container[0]
>>> playlist.load()
Playlist(u'spotify:user:jodal:playlist:5hBcGwxKlnzNnSrREQ4aUe')
>>> playlist.name
u'The Glitch Mob - Love Death Immortality'

The PlaylistContainer object lets you add, remove, move and rename playlists as well as playlist folders. See the
API docs for PlaylistContainer for more examples.

>>> del session.playlist_container[0]
>>> len(session.playlist_container)
52
>>> session.playlist_container.insert(0, playlist)
>>> len(session.playlist_container)
53

The Playlist objects let you add, remove and move tracks in a playlist, as well as turning on things like syncing of
the playlist for offline playback:

>>> playlist.offline_status
<PlaylistOfflineStatus.NO: 0>
>>> playlist.set_offline_mode(True)
>>> playlist.offline_status
<PlaylistOfflineStatus.WAITING: 3>
>>> session.process_events()
Probably needed multiple times, before syncing begins
>>> playlist.offline_status
<PlaylistOfflineStatus.DOWNLOADING: 2>
>>> playlist.offline_download_completed
20
More process_events()
>>> playlist.offline_status
<PlaylistOfflineStatus.YES: 1>

For more details, see the API docs for Playlist.

18 Chapter 4. User’s guide

pyspotify, Release 2.1.4

4.2.10 Playing music

Music data is delivered to the MUSIC_DELIVERY event listener as PCM frames. If you want to have full control of audio
playback, you can deliver these audio frames to your operating systems’ audio subsystem yourself. If you want some
help on the road, pyspotify comes with audio sinks for some select audio subsystems.

For details, have a look at the spotify.AlsaSink and spotify.PortAudioSink documentation, and the
examples/play_track.py and examples/shell.py examples.

4.2.11 Thread safety

If you’ve read the libspotify documentation, you may have noticed that libspotify itself isn’t thread safe. This means
that you must take care to never call libspotify functions from two threads at the same time, and to finish your work
with any pointers, e.g. strings, returned by libspotify functions before calling the next libspotify function. In summary,
you’ll need to use a single thread for all your use of libspotify, or protect all libspotify function calls with a single lock.

pyspotify, on the other hand, improves on this so that you can use pyspotify from multiple threads. pyspotify has a single
global lock. This lock is acquired during all calls to libspotify, for as long as we’re working with pointers returned from
libspotify functions, and during all access to pyspotify’s own internal state, like for example the collections of event
listeners. In other words, pyspotify should be safe to use from multiple threads simultaneously.

Even though pyspotify itself is thread safe, you cannot disregard threading issues entirely when using pyspotify. There’s
two things to watch out for. First, event listeners for a number of the events listed in SessionEvent will be called from
internal threads in libspotify itself. This is clearly marked in the documentation for the relevant events. Second, if you
use the EventLoop helper thread, listeners for all other events—that is, events not emitted from internal threads in
libspotify—will be called from the EventLoop thread. This shouldn’t be an issue if you just use pyspotify itself from
within the event listeners, but the moment you start working with your application’s state from inside event listeners,
you’ll need to apply the proper thread synchronization primitives to avoid getting into trouble.

4.2. Quickstart 19

pyspotify, Release 2.1.4

20 Chapter 4. User’s guide

CHAPTER

FIVE

API REFERENCE

5.1 API reference

The pyspotify API follows the libspotify API closely. Thus, you can refer to the similarly named functions in the
libspotify docs for further details.

spotify.__version__

pyspotify’s version number in the PEP 386 format.

>>> import spotify
>>> spotify.__version__
u'2.0.0'

spotify.get_libspotify_api_version()

Get the API compatibility level of the wrapped libspotify library.

>>> import spotify
>>> spotify.get_libspotify_api_version()
12

spotify.get_libspotify_build_id()

Get the build ID of the wrapped libspotify library.

>>> import spotify
>>> spotify.get_libspotify_build_id()
u'12.1.51.g86c92b43 Release Linux-x86_64 '

Sections

5.1.1 Error handling

exception spotify.Error

A Spotify error.

This is the superclass of all custom exceptions raised by pyspotify.

class spotify.ErrorType(value)

21

https://developer.spotify.com/technologies/libspotify/
https://peps.python.org/pep-0386/

pyspotify, Release 2.1.4

exception spotify.LibError(error_type)
A libspotify error.

Where many libspotify functions return error codes that must be checked after each and every function call,
pyspotify raises the LibError exception instead. This helps you to not accidentally swallow and hide errors
when using pyspotify.

exception spotify.Timeout(timeout)
Exception raised by an operation not completing within the given timeout.

5.1.2 Configuration

class spotify.Config

The session config.

Create an instance and assign to its attributes to configure. Then use the config object to create a session:

>>> config = spotify.Config()
>>> config.user_agent = 'My awesome Spotify client'
>>> # Etc ...
>>> session = spotify.Session(config=config)

5.1.3 Sessions

class spotify.Session(config=None)
The Spotify session.

If no config is provided, the default config is used.

The session object will emit a number of events. See SessionEvent for a list of all available events and how to
connect your own listener functions up to get called when the events happens.

Warning: You can only have one Session instance per process. This is a libspotify limitation. If you
create a second Session instance in the same process pyspotify will raise a RuntimeErrorwith the message
“Session has already been initialized”.

Parameters config (Config or None) – the session config

class spotify.SessionEvent

Session events.

Using the Session object, you can register listener functions to be called when various session related events
occurs. This class enumerates the available events and the arguments your listener functions will be called with.

Example usage:

import spotify

def logged_in(session, error_type):
if error_type is spotify.ErrorType.OK:

print('Logged in as %s' % session.user)
else:

(continues on next page)

22 Chapter 5. API reference

https://docs.python.org/3/library/exceptions.html#RuntimeError

pyspotify, Release 2.1.4

(continued from previous page)

print('Login failed: %s' % error_type)

session = spotify.Session()
session.on(spotify.SessionEvent.LOGGED_IN, logged_in)
session.login('alice', 's3cret')

All events will cause debug log statements to be emitted, even if no listeners are registered. Thus, there is no
need to register listener functions just to log that they’re called.

5.1.4 Event loop

class spotify.EventLoop(session)
Event loop for automatically processing events from libspotify.

The event loop is a Thread that listens to NOTIFY_MAIN_THREAD events and calls process_events() when
needed.

To use it, pass it your Session instance and call start():

>>> session = spotify.Session()
>>> event_loop = spotify.EventLoop(session)
>>> event_loop.start()

The event loop thread is a daemon thread, so it will not stop your application from exiting. If you wish to stop
the event loop without stopping your entire application, call stop(). You may call join() to block until the
event loop thread has finished, just like for any other thread.

Warning: If you use EventLoop to process the libspotify events, any event listeners you’ve registered will
be called from the event loop thread. pyspotify itself is thread safe, but you’ll need to ensure that you have
proper synchronization in your own application code, as always when working with threads.

5.1.5 Connection

class spotify.connection.Connection(session)
Connection controller.

You’ll never need to create an instance of this class yourself. You’ll find it ready to use as the connection
attribute on the Session instance.

class spotify.ConnectionRule(value)

class spotify.ConnectionState(value)

class spotify.ConnectionType(value)

5.1. API reference 23

https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/threading.html#threading.Thread.join

pyspotify, Release 2.1.4

5.1.6 Offline sync

class spotify.offline.Offline(session)
Offline sync controller.

You’ll never need to create an instance of this class yourself. You’ll find it ready to use as the offline attribute
on the Session instance.

class spotify.OfflineSyncStatus(sp_offline_sync_status)
A Spotify offline sync status object.

You’ll never need to create an instance of this class yourself. You’ll find it ready for use as the sync_status
attribute on the offline attribute on the Session instance.

5.1.7 Links

class spotify.Link(session, uri=None, sp_link=None, add_ref=True)
A Spotify object link.

Call the get_link() method on your Session instance to get a Link object from a Spotify URI. You can also
get links from the link attribute on most objects, e.g. Track.link.

To get the URI from the link object you can use the uri attribute, or simply use the link as a string:

>>> session = spotify.Session()
...
>>> link = session.get_link(
... 'spotify:track:2Foc5Q5nqNiosCNqttzHof')
>>> link
Link('spotify:track:2Foc5Q5nqNiosCNqttzHof')
>>> link.uri
'spotify:track:2Foc5Q5nqNiosCNqttzHof'
>>> str(link)
'spotify:track:2Foc5Q5nqNiosCNqttzHof'
>>> link.type
<LinkType.TRACK: 1>
>>> track = link.as_track()
>>> track.link
Link('spotify:track:2Foc5Q5nqNiosCNqttzHof')
>>> track.load().name
u'Get Lucky'

You can also get Link objects from open.spotify.com and play.spotify.com URLs:

>>> session.get_link(
... 'http://open.spotify.com/track/4wl1dK5dHGp3Ig51stvxb0')
Link('spotify:track:4wl1dK5dHGp3Ig51stvxb0')
>>> session.get_link(
... 'https://play.spotify.com/track/4wl1dK5dHGp3Ig51stvxb0'
... '?play=true&utm_source=open.spotify.com&utm_medium=open')
Link('spotify:track:4wl1dK5dHGp3Ig51stvxb0')

class spotify.LinkType(value)

24 Chapter 5. API reference

pyspotify, Release 2.1.4

5.1.8 Users

class spotify.User(session, uri=None, sp_user=None, add_ref=True)
A Spotify user.

You can get users from the session, or you can create a User yourself from a Spotify URI:

>>> session = spotify.Session()
...
>>> user = session.get_user('spotify:user:jodal')
>>> user.load().display_name
u'jodal'

5.1.9 Tracks

class spotify.Track(session, uri=None, sp_track=None, add_ref=True)
A Spotify track.

You can get tracks from playlists or albums, or you can create a Track yourself from a Spotify URI:

>>> session = spotify.Session()
...
>>> track = session.get_track('spotify:track:2Foc5Q5nqNiosCNqttzHof')
>>> track.load().name
u'Get Lucky'

class spotify.TrackAvailability(value)

class spotify.TrackOfflineStatus(value)

5.1.10 Albums

class spotify.Album(session, uri=None, sp_album=None, add_ref=True)
A Spotify album.

You can get an album from a track or an artist, or you can create an Album yourself from a Spotify URI:

>>> session = spotify.Session()
...
>>> album = session.get_album('spotify:album:6wXDbHLesy6zWqQawAa91d')
>>> album.load().name
u'Forward / Return'

class spotify.AlbumBrowser(session, album=None, callback=None, sp_albumbrowse=None, add_ref=True)
An album browser for a Spotify album.

You can get an album browser from any Album instance by calling Album.browse():

>>> session = spotify.Session()
...
>>> album = session.get_album('spotify:album:6wXDbHLesy6zWqQawAa91d')
>>> browser = album.browse()

(continues on next page)

5.1. API reference 25

pyspotify, Release 2.1.4

(continued from previous page)

>>> browser.load()
>>> len(browser.tracks)
7

class spotify.AlbumType(value)

5.1.11 Artists

class spotify.Artist(session, uri=None, sp_artist=None, add_ref=True)
A Spotify artist.

You can get artists from tracks and albums, or you can create an Artist yourself from a Spotify URI:

>>> session = spotify.Session()
...
>>> artist = session.get_artist(
... 'spotify:artist:22xRIphSN7IkPVbErICu7s')
>>> artist.load().name
u'Rob Dougan'

class spotify.ArtistBrowser(session, artist=None, type=None, callback=None, sp_artistbrowse=None,
add_ref=True)

An artist browser for a Spotify artist.

You can get an artist browser from any Artist instance by calling Artist.browse():

>>> session = spotify.Session()
...
>>> artist = session.get_artist(
... 'spotify:artist:421vyBBkhgRAOz4cYPvrZJ')
>>> browser = artist.browse()
>>> browser.load()
>>> len(browser.albums)
7

class spotify.ArtistBrowserType(value)

5.1.12 Images

class spotify.Image(session, uri=None, sp_image=None, add_ref=True, callback=None)
A Spotify image.

You can get images from Album.cover(), Artist.portrait(), Playlist.image(), or you can create an
Image yourself from a Spotify URI:

>>> session = spotify.Session()
...
>>> image = session.get_image(
... 'spotify:image:a0bdcbe11b5cd126968e519b5ed1050b0e8183d0')
>>> image.load().data_uri[:50]
u''

26 Chapter 5. API reference

pyspotify, Release 2.1.4

If callback isn’t None, it is expected to be a callable that accepts a single argument, an Image instance, when
the image is done loading.

class spotify.ImageFormat(value)

class spotify.ImageSize(value)

5.1.13 Search

Warning: The search API was broken at 2016-02-03 by a server-side change made by Spotify. The functionality
was never restored.

Please use the Spotify Web API to perform searches.

class spotify.Search(session, query='', callback=None, track_offset=0, track_count=20, album_offset=0,
album_count=20, artist_offset=0, artist_count=20, playlist_offset=0, playlist_count=20,
search_type=None, sp_search=None, add_ref=True)

A Spotify search result.

Call the search() method on your Session instance to do a search and get a Search back.

class spotify.SearchPlaylist(session, name, uri, image_uri)
A playlist matching a search query.

class spotify.SearchType(value)

5.1.14 Playlists

Warning: The playlists API was broken at 2018-05-24 by a server-side change made by Spotify. The functionality
was never restored.

Please use the Spotify Web API to work with playlists.

class spotify.Playlist(session, uri=None, sp_playlist=None, add_ref=True)
A Spotify playlist.

You can get playlists from the playlist_container, inbox, get_starred(), search(), etc., or you can
create a playlist yourself from a Spotify URI:

>>> session = spotify.Session()
...
>>> playlist = session.get_playlist(
... 'spotify:user:fiat500c:playlist:54k50VZdvtnIPt4d8RBCmZ')
>>> playlist.load().name
u'500C feelgood playlist'

class spotify.PlaylistEvent

Playlist events.

Using Playlist objects, you can register listener functions to be called when various events occurs in the
playlist. This class enumerates the available events and the arguments your listener functions will be called with.

5.1. API reference 27

pyspotify, Release 2.1.4

Example usage:

import spotify

def tracks_added(playlist, tracks, index):
print('Tracks added to playlist')

session = spotify.Session()
Login, etc...

playlist = session.playlist_container[0]
playlist.on(spotify.PlaylistEvent.TRACKS_ADDED, tracks_added)

All events will cause debug log statements to be emitted, even if no listeners are registered. Thus, there is no
need to register listener functions just to log that they’re called.

class spotify.PlaylistContainer(session, sp_playlistcontainer, add_ref=True)
A Spotify playlist container.

The playlist container can be accessed as a regular Python collection to work with the playlists:

>>> import spotify
>>> session = spotify.Session()
Login, etc.
>>> container = session.playlist_container
>>> container.is_loaded
False
>>> container.load()
[Playlist(u'spotify:user:jodal:playlist:6xkJysqhkj9uwufFbUb8sP'),
Playlist(u'spotify:user:jodal:playlist:0agJjPcOhHnstLIQunJHxo'),
PlaylistFolder(id=8027491506140518932L, name=u'Shared playlists',

type=<PlaylistType.START_FOLDER: 1>),
Playlist(u'spotify:user:p3.no:playlist:7DkMndS2KNVQuf2fOpMt10'),
PlaylistFolder(id=8027491506140518932L, name=u'',

type=<PlaylistType.END_FOLDER: 2>)]
>>> container[0]
Playlist(u'spotify:user:jodal:playlist:6xkJysqhkj9uwufFbUb8sP')

As you can see, a playlist container can contain a mix of Playlist and PlaylistFolder objects.

The container supports operations that changes the container as well.

To add a playlist you can use append() or insert() with either the name of a new playlist or an existing playlist
object. For example:

>>> playlist = session.get_playlist(
... 'spotify:user:fiat500c:playlist:54k50VZdvtnIPt4d8RBCmZ')
>>> container.insert(3, playlist)
>>> container.append('New empty playlist')

To remove a playlist or folder you can use remove_playlist(), or:

>>> del container[0]

To replace an existing playlist or folder with a new empty playlist with the given name you can use
remove_playlist() and add_new_playlist(), or:

28 Chapter 5. API reference

pyspotify, Release 2.1.4

>>> container[0] = 'My other new empty playlist'

To replace an existing playlist or folder with an existing playlist you can :use remove_playlist() and
add_playlist(), or:

>>> container[0] = playlist

class spotify.PlaylistContainerEvent

Playlist container events.

Using PlaylistContainer objects, you can register listener functions to be called when various events occurs
in the playlist container. This class enumerates the available events and the arguments your listener functions
will be called with.

Example usage:

import spotify

def container_loaded(playlist_container):
print('Playlist container loaded')

session = spotify.Session()
Login, etc...

session.playlist_container.on(
spotify.PlaylistContainerEvent.CONTAINER_LOADED, container_loaded)

All events will cause debug log statements to be emitted, even if no listeners are registered. Thus, there is no
need to register listener functions just to log that they’re called.

class spotify.PlaylistFolder(id, name, type)
An object marking the start or end of a playlist folder.

id

An opaque ID that matches the ID of the PlaylistFolder object at the other end of the folder.

name

Name of the playlist folder. This is an empty string for the END_FOLDER.

type

The PlaylistType of the folder. Either START_FOLDER or END_FOLDER.

class spotify.PlaylistOfflineStatus(value)

class spotify.PlaylistPlaceholder

An object marking an unknown entry in the playlist container.

class spotify.PlaylistTrack(session, sp_playlist, index)
A playlist track with metadata specific to the playlist.

Use tracks_with_metadata to get a list of PlaylistTrack .

class spotify.PlaylistType(value)

class spotify.PlaylistUnseenTracks(session, sp_playlistcontainer, sp_playlist)
A list of unseen tracks in a playlist.

The list may contain items that are None.

5.1. API reference 29

pyspotify, Release 2.1.4

Returned by PlaylistContainer.get_unseen_tracks().

5.1.15 Toplists

class spotify.Toplist(session, type=None, region=None, canonical_username=None, callback=None,
sp_toplistbrowse=None, add_ref=True)

A Spotify toplist of artists, albums or tracks that are currently most popular worldwide or in a specific region.

Call the get_toplist() method on your Session instance to get a Toplist back.

class spotify.ToplistRegion(value)

class spotify.ToplistType(value)

5.1.16 Inbox

class spotify.InboxPostResult(session, canonical_username=None, tracks=None, message='',
callback=None, sp_inbox=None, add_ref=True)

The result object returned by Session.inbox_post_tracks().

5.1.17 Social

class spotify.social.Social(session)
Social sharing controller.

You’ll never need to create an instance of this class yourself. You’ll find it ready to use as the social attribute
on the Session instance.

class spotify.ScrobblingState(value)

class spotify.SocialProvider(value)

5.1.18 Player

class spotify.player.Player(session)
Playback controller.

You’ll never need to create an instance of this class yourself. You’ll find it ready to use as the player attribute
on the Session instance.

class spotify.player.PlayerState

30 Chapter 5. API reference

pyspotify, Release 2.1.4

5.1.19 Audio

class spotify.AudioBufferStats(samples, stutter)
Stats about the application’s audio buffers.

samples

Number of samples currently in the buffer.

stutter

Number of stutters (audio dropouts) since the last query.

class spotify.AudioFormat(sp_audioformat)
A Spotify audio format object.

You’ll never need to create an instance of this class yourself, but you’ll get AudioFormat objects as the
audio_format argument to the music_delivery callback.

class spotify.Bitrate(value)

class spotify.SampleType(value)

5.1.20 Audio sinks

class spotify.AlsaSink(session, device='default')
Audio sink for systems using ALSA, e.g. most Linux systems.

This audio sink requires pyalsaaudio. pyalsaaudio is probably packaged in your Linux distribution.

For example, on Debian/Ubuntu you can install it from APT:

sudo apt-get install python-alsaaudio

Or, if you want to install pyalsaaudio inside a virtualenv, install the ALSA development headers from APT, then
pyalsaaudio:

sudo apt-get install libasound2-dev
pip install pyalsaaudio

The device keyword argument is passed on to alsaaudio.PCM. Please refer to the pyalsaaudio documentation
for details.

Example:

>>> import spotify
>>> session = spotify.Session()
>>> audio = spotify.AlsaSink(session)
>>> loop = spotify.EventLoop(session)
>>> loop.start()
Login, etc...
>>> track = session.get_track('spotify:track:3N2UhXZI4Gf64Ku3cCjz2g')
>>> track.load()
>>> session.player.load(track)
>>> session.player.play()
Listen to music...

5.1. API reference 31

https://pypi.python.org/pypi/pyalsaaudio
https://larsimmisch.github.io/pyalsaaudio/libalsaaudio.html#alsaaudio.PCM

pyspotify, Release 2.1.4

class spotify.PortAudioSink(session)
Audio sink for PortAudio.

PortAudio is available for many platforms, including Linux, macOS, and Windows. This audio sink requires
PyAudio. PyAudio is probably packaged in your Linux distribution.

On Debian/Ubuntu you can install PyAudio from APT:

sudo apt-get install python-pyaudio

Or, if you want to install PyAudio inside a virtualenv, install the PortAudio development headers from APT, then
PyAudio:

sudo apt-get install portaudio19-dev
pip install --allow-unverified=pyaudio pyaudio

On macOS you can install PortAudio using Homebrew:

brew install portaudio
pip install --allow-unverified=pyaudio pyaudio

For an example of how to use this class, see the AlsaSink example. Just replace AlsaSink with
PortAudioSink.

5.1.21 Internal API

Warning: This page documents pyspotify’s internal APIs. Its intended audience is developers working on pyspo-
tify itself. You should not use anything you find on this page in your own applications.

libspotify CFFI interface

The CFFI wrapper for the full libspotify API is available as spotify.ffi and spotify.lib.

spotify.ffi

cffi.FFI instance which knows about libspotify types.

>>> import spotify
>>> spotify.ffi.new('sp_audioformat *')
<cdata 'struct sp_audioformat *' owning 12 bytes>

spotify.lib

Dynamic wrapper around the full libspotify C API.

>>> import spotify
>>> msg = spotify.lib.sp_error_message(spotify.lib.SP_ERROR_OK)
>>> msg
<cdata 'char *' 0x7f29fd922cb5>
>>> spotify.ffi.string(msg)
'No error'

spotify.lib will always reflect the contents of the spotify/api.processed.h file in the pyspotify distribution.
To update the API:

1. Update the file spotify/api.h with the latest header file from libspotify.

32 Chapter 5. API reference

http://www.portaudio.com/
https://pypi.python.org/pypi/pyaudio
http://cffi.readthedocs.io/

pyspotify, Release 2.1.4

2. Run the Invoke task preprocess_header defined in tasks.py by running:

invoke preprocess_header

The task will update the spotify/api.processed.h file.

3. Commit both header files so that they are distributed with pyspotify.

Thread safety utils

spotify.serialized(f)
Decorator that serializes access to all decorated functions.

The decorator acquires pyspotify’s single global lock while calling any wrapped function. It is used to serialize
access to:

• All calls to functions on spotify.lib.

• All code blocks working on pointers returned from functions on spotify.lib.

• All code blocks working on other internal data structures in pyspotify.

Together this is what makes pyspotify safe to use from multiple threads and enables convenient features like the
EventLoop.

Internal function.

Event emitter utils

class spotify.utils.EventEmitter

Mixin for adding event emitter functionality to a class.

Enumeration utils

class spotify.utils.IntEnum(value)
An enum type for values mapping to integers.

Tries to stay as close as possible to the enum type specified in PEP 435 and introduced in Python 3.4.

spotify.utils.make_enum(lib_prefix, enum_prefix='')
Class decorator for automatically adding enum values.

The values are read directly from the spotify.lib CFFI wrapper around libspotify. All values starting with
lib_prefix are added. The lib_prefix is stripped from the name. Optionally, enum_prefix can be specified
to add a prefix to all the names.

5.1. API reference 33

http://www.pyinvoke.org/
https://peps.python.org/pep-0435/

pyspotify, Release 2.1.4

Object loading utils

spotify.utils.load(session, obj, timeout=None)
Block until the object’s data is loaded.

If the session isn’t logged in, a spotify.Error is raised as Spotify objects cannot be loaded without being
online and logged in.

The obj must at least have the is_loaded attribute. If it also has an error() method, it will be checked for
errors to raise.

After timeout seconds with no results Timeout is raised.

If unspecified, the timeout defaults to 10s. Any timeout is better than no timeout, since no timeout would cause
programs to potentially hang forever without any information to help debug the issue.

The method returns self to allow for chaining of calls.

Sequence utils

class spotify.utils.Sequence(sp_obj, add_ref_func, release_func, len_func, getitem_func)
Helper class for making sequences from a length and getitem function.

The sp_obj is assumed to already have gotten an extra reference through sp_*_add_ref and to be automatically
released through sp_*_release when the sp_obj object is GC-ed.

String conversion utils

spotify.utils.get_with_fixed_buffer(buffer_length, func, *args)
Get a unicode string from a C function that takes a fixed-size buffer.

The C function func is called with any arguments given in args, a buffer of the given buffer_length, and
buffer_length.

Returns the buffer’s value decoded from UTF-8 to a unicode string.

spotify.utils.get_with_growing_buffer(func, *args)
Get a unicode string from a C function that returns the buffer size needed to return the full string.

The C function func is called with any arguments given in args, a buffer of fixed size, and the buffer size. If the
C function returns a size that is larger than the buffer already filled, the C function is called again with a buffer
large enough to get the full string from the C function.

Returns the buffer’s value decoded from UTF-8 to a unicode string.

spotify.utils.to_bytes(value)
Converts bytes, unicode, and C char arrays to bytes.

Unicode strings are encoded to UTF-8.

spotify.utils.to_bytes_or_none(value)
Converts C char arrays to bytes and C NULL values to None.

spotify.utils.to_unicode(value)
Converts bytes, unicode, and C char arrays to unicode strings.

Bytes and C char arrays are decoded from UTF-8.

34 Chapter 5. API reference

pyspotify, Release 2.1.4

spotify.utils.to_unicode_or_none(value)
Converts C char arrays to unicode and C NULL values to None.

C char arrays are decoded from UTF-8.

spotify.utils.to_char(value)
Converts bytes, unicode, and C char arrays to C char arrays.

spotify.utils.to_char_or_null(value)
Converts bytes, unicode, and C char arrays to C char arrays, and None to C NULL values.

Country code utils

spotify.utils.to_country(code)
Converts a numeric libspotify country code to an ISO 3166-1 two-letter country code in a unicode string.

spotify.utils.to_country_code(country)
Converts an ISO 3166-1 two-letter country code in a unicode string to a numeric libspotify country code.

5.1. API reference 35

pyspotify, Release 2.1.4

36 Chapter 5. API reference

CHAPTER

SIX

ABOUT

6.1 Authors

pyspotify 2.x is copyright 2013-2022 Stein Magnus Jodal and contributors. pyspotify is licensed under the Apache
License, Version 2.0.

Thanks to Thomas Adamcik who continuously reviewed code and provided feedback during the development of pyspo-
tify 2.x.

The following persons have contributed to pyspotify 2.x. The list is in the order of first contribution. For details on
who have contributed what, please refer to our Git repository.

• Stein Magnus Jodal <stein.magnus@jodal.no>

• Richard Ive <richard@xanox.net>

• Thomas Vander Stichele <thomas@apestaart.org>

• Nick Steel <kingosticks@gmail.com>

• Trygve Aaberge <trygveaa@gmail.com>

• Tarik Dadi <daditarik@gmail.com>

• vrs01 <vrs01@users.noreply.github.com>

• Thomas Adamcik <thomas@adamcik.no>

• Edward Betts <edward@4angle.com>

If you want to contribute to pyspotify, see Contributing.

6.2 Changelog

6.2.1 v2.1.4 (2022-06-15)

Maintenance release.

• Declare the pyspotify project as dead.

• Add support for Python 3.9 and 3.10. No changes was required, but the test suite now runs on these versions too.
(PR: #203)

• Switch from CircleCI to GitHub Actions.

37

mailto:stein.magnus@jodal.no
mailto:richard@xanox.net
mailto:thomas@apestaart.org
mailto:kingosticks@gmail.com
mailto:trygveaa@gmail.com
mailto:daditarik@gmail.com
mailto:vrs01@users.noreply.github.com
mailto:thomas@adamcik.no
mailto:edward@4angle.com
https://github.com/jodal/pyspotify/issues/203

pyspotify, Release 2.1.4

6.2.2 v2.1.3 (2019-12-29)

Maintenance release.

• Document that the playlists API is broken. If it is used, emit a warning to notify the user of the playlist function-
ality.

• Update project links.

6.2.3 v2.1.2 (2019-12-10)

Maintenance release.

• Silently abort libspotify sp_*_release() function calls that happen during process shutdown, after pyspotify’s
global lock is freed. (Fixes: #202)

6.2.4 v2.1.1 (2019-11-17)

Maintenance release.

• Add support for Python 3.8. No changes was required, but the test suite now runs on this version too.

• Switch from Travis CI to CircleCI.

6.2.5 v2.1.0 (2019-07-08)

Maintenance release.

• Drop support for Python 3.3 and 3.4, as both has reached end of life.

• Add support for Python 3.6 and 3.7. No changes was required, but the test suite now runs on these versions too.

• On Python 3, import Iterable, MutableSequence, and Sequence from collections.abc instead of
collections. This fixes a deprecation warning on Python 3.7 and prepares for Python 3.8.

• Document that the search API is broken. If it is used, raise an exception instead of sending the search to Spotify,
as that seems to disconnect your session. (Fixes: #183)

• Format source code with Black.

6.2.6 v2.0.5 (2015-09-22)

Bug fix release.

• To follow up on the previous release, the getters for the proxy configs now convert empty strings in the
sp_session_config struct back to None. Thus, the need to set these configs to empty strings in the struct
to make sure the cached settings are cleared from disk are now an internal detail, hidden from the user of pyspo-
tify.

• Make tracefile default to None and set to NULL in the libspotify config struct. If it is set to an empty string by
default, libspotify will try to use a file with an empty filename for cache and fail with “LibError: Unable to open
trace file”. Now empty strings are set as NULL in the sp_session_config struct. (Fixes: mopidy-spotify#70)

• libspotify segfaults if the device_id config is set to an empty string. We now avoid this segfault if device_id
is set to an empty string by setting the device_id field in libspotify’s sp_session_config struct to NULL
instead.

38 Chapter 6. About

https://github.com/jodal/pyspotify/issues/202
https://docs.python.org/3/library/collections.abc.html#module-collections.abc
https://docs.python.org/3/library/collections.html#module-collections
https://github.com/jodal/pyspotify/issues/183
https://github.com/mopidy/mopidy-spotify/issues/70

pyspotify, Release 2.1.4

• As some test tools (like coverage.py 4.0) no longer support Python 3.2, we no longer test pyspotify on Python
3.2. Though, we have not done anything to intentionally break support for Python 3.2 ourselves.

6.2.7 v2.0.4 (2015-09-15)

Bug fix release.

• It has been observed that libspotify will reuse cached proxy settings from previous sessions if the proxy fields
on the sp_session_config struct are set to NULL. When the sp_session_config fields are set to an empty
string, the cached settings are updated. When attributes on spotify.Config are set to None, we now set the
fields on sp_session_config to empty strings instead of NULL.

6.2.8 v2.0.3 (2015-09-05)

Bug fix release.

• Make moving a playlist to its own location a no-op instead of causing an error like libspotify does. (Fixes: #175)

• New better installation instructions. (Fixes: #174)

6.2.9 v2.0.2 (2015-08-06)

Bug fix release.

• Use sp_session_starred_for_user_create(session, username) instead of
sp_playlist_create(session, link) to get starred playlists by URI. The previous approach caused
segfaults under some circumstances. (Fixes: mopidy-spotify#60)

6.2.10 v2.0.1 (2015-07-20)

Bug fix release.

• Make spotify.Session.get_playlist() acquire the global lock before modifying the global playlist cache.

• Make Playlist and PlaylistContainer register callbacks with libspotify if and only if a Python event han-
dler is added to the object. Previously, we always registered the callbacks with libspotify. Hopefully, this will
remove the preconditions for the crashes in #122, #153, and #165.

6.2.11 v2.0.0 (2015-06-01)

pyspotify 2.x is a full rewrite of pyspotify. While pyspotify 1.x is a CPython C extension, pyspotify 2.x uses CFFI to
wrap the libspotify C library. It works on CPython 2.7 and 3.2+, as well as PyPy 2.6+. pyspotify 2.0 makes 100% of
the libspotify 12.1.51 API available from Python, going far beyond the API coverage of pyspotify 1.x.

The following are the changes since pyspotify 2.0.0b5.

6.2. Changelog 39

https://github.com/jodal/pyspotify/issues/175
https://github.com/jodal/pyspotify/issues/174
https://github.com/mopidy/mopidy-spotify/issues/60
https://github.com/jodal/pyspotify/issues/122
https://github.com/jodal/pyspotify/issues/153
https://github.com/jodal/pyspotify/issues/165
https://cffi.readthedocs.io/

pyspotify, Release 2.1.4

Dependency changes

• Require cffi >= 1.0. (Fixes: #133, #160)

• If you’re using pyspotify with PyPy you need version 2.6 or newer as older versions of PyPy come with a too old
cffi version. For PyPy3, you’ll probably need the yet to be released PyPy3 2.5.

ALSA sink

• Changed the spotify.AlsaSink keyword argument card to device to align with pyalsaaudio 0.8.

• Updated to work with pyalsaaudio 0.8 which changed the signature of alsaaudio.PCM. spotify.AlsaSink
still works with pyalsaaudio 0.7, but 0.8 is recommended at least for Python 3 users, as it fixes a memory leak
present on Python 3 (see #127). (Fixes: #162)

6.2.12 v2.0.0b5 (2015-05-09)

A fifth beta with a couple of bug fixes.

Minor changes

• Changed spotify.Link.as_playlist() to also support creating playlists from links with type spotify.
LinkType.STARRED.

• Changed all load() methods to raise spotify.Error instead of RuntimeError if the session isn’t logged in.

• Changed from nose to py.test as test runner.

Bug fixes

• Work around segfault in libspotify when spotify.Config.cache_location is set to None and then used to
create a session. (Fixes: #151)

• Return a spotify.PlaylistPlaceholder object instead of raising an exception if the playlist container con-
tains an element of type PLACEHOLDER. (Fixes: #159)

6.2.13 v2.0.0b4 (2015-01-13)

The fourth beta includes a single API change, a couple of API additions, and otherwise minor tweaks to logging.

pyspotify 2.x has been verified to work on PyPy3, and PyPy3 is now part of the test matrix.

Minor changes

• Added spotify.Link.url which returns an https://open.spotify.com/... URL for the link object.

• Adjusted info, warning, and error level log messages to include the word “Spotify” or “pyspotify” for context
in applications not including the logger name in the log. debug level messages have not been changed, as it is
assumed that more details, including the logger name, is included in debug logs.

• Added spotify.player.Player.state which is maintained by calls to the various Player methods.

40 Chapter 6. About

https://github.com/jodal/pyspotify/issues/133
https://github.com/jodal/pyspotify/issues/160
https://larsimmisch.github.io/pyalsaaudio/libalsaaudio.html#alsaaudio.PCM
https://github.com/jodal/pyspotify/issues/127
https://github.com/jodal/pyspotify/issues/162
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://github.com/jodal/pyspotify/issues/151
https://github.com/jodal/pyspotify/issues/159

pyspotify, Release 2.1.4

Bug fixes

• Fix spotify.Playlist.reorder_tracks(). It now accepts a list of track indexes instead of a list of tracks.
This makes it possible to reorder any of multiple identical tracks in a playlist and is consistent with spotify.
Playlist.remove_tracks(). (Fixes: #134)

• Fix pause/resume/stop in the examples/shell.py example. (PR: #140)

• Errors passed to session callbacks are now logged with the full error type representation, instead
of just the integer value. E.g. where previously only “8” was logged, we now log “<Er-
rorType.UNABLE_TO_CONTACT_SERVER: 8>”.

6.2.14 v2.0.0b3 (2014-05-04)

The third beta includes a couple of changes to the API in the name of consistency, as well as three minor improvements.

Also worth noticing is that with this release, pyspotify 2.x has been in development for a year and a day. Happy birthday,
pyspotify 2!

Refactoring: Connection cleanup

Parts of spotify.Session and spotify.Session.offline has been moved to spotify.Session.connection:

• set_connection_type() has been replaced by session.connection.type, which now also allows reading
the current connection type.

• set_connection_rules() has been replaced by:

– allow_network

– allow_network_if_roaming

– allow_sync_over_wifi

– allow_sync_over_mobile

The new attributes allow reading the current connection rules, so your application don’t have to keep track of
what rules it has set.

• session.connection_state has been replaced by session.connection.state

Refactoring: position vs index

Originally, pyspotify named everything identically with libspotify and have thus ended up with a mix of the terms
“position” and “index” for the same concept. Now, we use “index” all over the place, as that’s also the name used
in the Python world at large. This changes the signature of three methods, which may affect you if you use keyword
arguments to call the methods. There’s also a number of affected events, but these changes shouldn’t stop your code
from working.

Affected functions include:

• spotify.Playlist.add_tracks() now takes index instead of position.

• spotify.Playlist.remove_tracks() now takes indexes instead of positions.

• spotify.Playlist.reorder_tracks() now takes new_index instead of new_position.

Affected events include:

• spotify.PlaylistContainerEvent.PLAYLIST_ADDED

6.2. Changelog 41

https://github.com/jodal/pyspotify/issues/134
https://github.com/jodal/pyspotify/issues/140

pyspotify, Release 2.1.4

• spotify.PlaylistContainerEvent.PLAYLIST_REMOVED

• spotify.PlaylistContainerEvent.PLAYLIST_MOVED

• spotify.PlaylistEvent.TRACKS_ADDED

• spotify.PlaylistEvent.TRACKS_REMOVED

• spotify.PlaylistEvent.TRACKS_MOVED

• spotify.PlaylistEvent.TRACK_CREATED_CHANGED

• spotify.PlaylistEvent.TRACK_SEEN_CHANGED

• spotify.PlaylistEvent.TRACK_MESSAGE_CHANGED

Minor changes

• load() methods now return the object if it is already loaded, even if state isn’t LOGGED_IN. Previously, a
RuntimeErrorwas raised requiring the session to be logged in and online before loading already loaded objects.

• spotify.Playlist.tracks now implements the collections.MutableSequence contract, supporting
deleting items with del playlist.tracks[i], adding items with playlist.tracks[i] = track, etc.

• spotify.Session.get_link() and all other methods accepting Spotify URIs now also understand
open.spotify.com and play.spotify.com URLs.

6.2.15 v2.0.0b2 (2014-04-29)

The second beta is a minor bug fix release.

Bug fixes

• Fix spotify.Playlist.remove_tracks. It now accepts a list of track positions instead of a list of tracks.
This makes it possible to remove any of multiple identical tracks in a playlist. (Fixes: #128)

Minor changes

• Make all objects compare as equal and have the same hash if they wrap the same libspotify object. This makes it
possible to find the index of a track in a playlist by doing playlist.tracks.index(track), where playlist.
tracks is a custom collection always returning new Track instances. (Related to: #128)

• spotify.Config.ca_certs_filename now works on systems where libspotify has this field. On systems
where this field isn’t present in libspotify, assigning to it will have no effect. Previously, assignment to this field
was a noop on all platforms because the field is missing from libspotify on OS X.

42 Chapter 6. About

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://github.com/jodal/pyspotify/issues/128
https://github.com/jodal/pyspotify/issues/128

pyspotify, Release 2.1.4

6.2.16 v2.0.0b1 (2014-04-24)

pyspotify 2.x is a full rewrite of pyspotify. While pyspotify 1.x is a CPython C extension, pyspotify 2.x uses CFFI to
make 100% of the libspotify C library available from Python. It works on CPython 2.7 and 3.2+, as well as PyPy 2.1+.

Since the previous release, pyspotify has become thread safe. That is, pyspotify can safely be used from multiple threads.
The added thread safety made an integrated event loop possible, which greatly simplifies the usage of pyspotify, as can
be seen from the updated example in examples/shell.py. Audio sink helpers for ALSA and PortAudio have been
added, together with updated examples that can play music. A number of bugs have been fixed, and at the time of the
release, there are no known issues.

The pyspotify 2.0.0b1 release marks the completion of all planned features for pyspotify 2.x. The plans for the next re-
leases are focused on fixing bugs as they surface, incrementally improving the documentation, and integrating feedback
from increased usage of the library in the wild.

Feature: Thread safety

• Hold the global lock while we are working with pointers returned by libspotify. This ensures that we never call
libspotify from another thread while we are still working on the data returned by the previous libspotify call,
which could make the data garbage.

• Ensure we never edit shared data structures without holding the global lock.

Feature: Event loop

• Add spotify.EventLoop helper thread that reacts to NOTIFY_MAIN_THREAD events and calls
process_events() for you when appropriate.

• Update examples/shell.py to be a lot simpler with the help of the new event loop.

Feature: Audio playback

• Add spotify.AlsaSink , an audio sink for playback through ALSA on Linux systems.

• Add spotify.PortAudioSink , an audio sink for playback through PortAudio on most platforms, including
Linux, OS X, and Windows.

• Update examples/shell.py to use the ALSA sink to play music.

• Add examples/play_track.py as a simpler example of audio playback.

Refactoring: Remove global state

To prepare for removing all global state, the use of the module attribute spotify.session_instance has been re-
placed with explicit passing of the session object to all objects that needs it. To allow for this, the following new
methods have been added, and should be used instead of their old equivalents:

• spotify.Session.get_link() replaces spotify.Link .

• spotify.Session.get_track() replaces spotify.Track .

• spotify.Session.get_local_track() replaces spotify.LocalTrack.

• spotify.Session.get_album() replaces spotify.Album .

• spotify.Session.get_artist() replaces spotify.Artist.

• spotify.Session.get_playlist() replaces spotify.Playlist.

6.2. Changelog 43

http://cffi.readthedocs.io/

pyspotify, Release 2.1.4

• spotify.Session.get_user() replaces spotify.User.

• spotify.Session.get_image() replaces spotify.Image.

• spotify.Session.get_toplist() replaces spotify.Toplist.

Refactoring: Consistent naming of Session members

With all the above getters added to the spotify.Session object, it made sense to rename some existing methods of
Session for consistency:

• spotify.Session.starred_for_user() is replaced by get_starred().

• spotify.Session.starred to get the currently logged in user’s starred playlist is replaced by get_starred()
without any arguments.

• spotify.Session.get_published_playlists() replaces published_playlists_for_user(). As pre-
viously, it returns the published playlists for the currently logged in user if no username is provided.

Refactoring: Consistent naming of threading.Event objects

All threading.Event objects have been renamed to be consistently named across classes.

• spotify.AlbumBrowser.loaded_event replaces spotify.AlbumBrowser.complete_event.

• spotify.ArtistBrowser.loaded_event replaces spotify.ArtistBrowser.complete_event.

• spotify.Image.loaded_event replaces spotify.Image.load_event.

• spotify.InboxPostResult.loaded_event replaces spotify.InboxPostResult.complete_event.

• spotify.Search.loaded_event replaces spotify.Search.complete_event.

• spotify.Toplist.loaded_event replaces spotify.Toplist.complete_event.

Refactoring: Change how to register image load listeners

pyspotify has two main schemes for registering listener functions:

• Objects that only emit an event when it is done loading, like AlbumBrowser, ArtistBrowser,
InboxPostResult, Search , and Toplist, accept a single callback as a callback argument to its constructor
or constructor methods.

• Objects that have multiple callback events, like Session, PlaylistContainer, and Playlist, accept the
registration and unregistration of one or more listener functions for each event it emits. This can happen any time
during the object’s life cycle.

Due to pyspotify’s close mapping to libspotify’s organization, Image objects used to use a third variant with two
methods, add_load_callback() and remove_load_callback(), for adding and removing load callbacks. These
methods have now been removed, and Image accepts a callback argument to its constructor and constructor methods:

• spotify.Album.cover() accepts a callback argument.

• spotify.Artist.portrait() accepts a callback argument.

• spotify.ArtistBrowser.portraits() is now a method and accepts a callback argument.

• spotify.Link.as_image() accepts a callback argument.

• spotify.Playlist.image() is now a method and accepts a callback argument.

• spotify.Session.get_image() accepts a callback argument.

44 Chapter 6. About

https://docs.python.org/3/library/threading.html#threading.Event

pyspotify, Release 2.1.4

Bug fixes

• Remove multiple extra sp_link_add_ref() calls, potentially causing memory leaks in libspotify.

• Add missing error check to spotify.Playlist.add_tracks().

• Keep album, artist, image, inbox, search, and toplist objects alive until their complete/load callbacks have been
called, even if the library user doesn’t keep any references to the objects. (Fixes: #121)

• Fix flipped logic causing crash in spotify.Album.cover_link(). (Fixes: #126)

• Work around segfault in libspotify if private_session is set before the session is logged in and the first events
are processed. This is a bug in libspotify which has been reported to Spotify through their IRC channel.

• Multiple attributes on Track raised an exception if accessed before the track was loaded. They now return None
or similar as documented.

• Fix segfault when creating local tracks without all arguments specified. NULLwas used as the placeholder instead
of the empty string.

• Support negative indexes on all custom sequence types. For example, collection[-1] returns the last element
in the collection.

• We now cache playlists when created from URIs. Previously, only playlists created from sp_playlist ob-
jects were cached. This avoids a potentially large number of wrapper object recreations due to a flood of up-
dates to the playlist when it is initially loaded. Combined with having registered a callback for the libspotify
playlist_update_in_progress callback, this could cause deep call stacks reaching the maximum recursion
depth. (Fixes: #122)

Minor changes

• Add spotify.get_libspotify_api_version() and spotify.get_libspotify_build_id().

• Running python setup.py test now runs the test suite.

• The tests are now compatible with CPython 3.4. No changes to the implementation was required.

• The test suite now runs on Mac OS X, using CPython 2.7, 3.2, 3.3, 3.4, and PyPy 2.2, on every push to GitHub.

6.2.17 v2.0.0a1 (2014-02-14)

pyspotify 2.x is a full rewrite of pyspotify. While pyspotify 1.x is a CPython C extension, pyspotify 2.x uses CFFI to
wrap the libspotify C library. It works on CPython 2.7 and 3.2+, as well as PyPy 2.1+.

This first alpha release of pyspotify 2.0.0 makes 100% of the libspotify 12.1.51 API available from Python, going far
beyond the API coverage of pyspotify 1.x.

pyspotify 2.0.0a1 has an extensive test suite with 98% line coverage. All tests pass on all combinations of CPython
2.7, 3.2, 3.3, PyPy 2.2 running on Linux on i386, amd64, armel, and armhf. Mac OS X should work, but has not been
tested recently.

This release does not provide:

• thread safety,

• an event loop for regularly processing libspotify events, or

• audio playback drivers.

These features are planned for the upcoming prereleases.

6.2. Changelog 45

https://github.com/jodal/pyspotify/issues/121
https://github.com/jodal/pyspotify/issues/126
https://github.com/jodal/pyspotify/issues/122
http://cffi.readthedocs.io/

pyspotify, Release 2.1.4

Development milestones

• 2014-02-13: Playlist callbacks complete. pyspotify 2.x now covers 100% of the libspotify 12 API. Docs reviewed,
quickstart guide extended. Redundant getters/setters removed.

• 2014-02-08: Playlist container callbacks complete.

• 2014-01-31: Redesign session event listening to a model supporting multiple listeners per event, with a nicer
API for registering listeners.

• 2013-12-16: Ensure we never call libspotify from two different threads at the same time. We can’t assume that
the CPython GIL will ensure this for us, as we target non-CPython interpreters like PyPy.

• 2013-12-13: Artist browsing complete.

• 2013-12-13: Album browsing complete.

• 2013-11-29: Toplist subsystem complete.

• 2013-11-27: Inbox subsystem complete.

• 2013-10-14: Playlist subsystem almost complete.

• 2013-06-21: Search subsystem complete.

• 2013-06-10: Album subsystem complete.

• 2013-06-09: Track and artist subsystem complete.

• 2013-06-02: Session subsystem complete, with all methods.

• 2013-06-01: Session callbacks complete.

• 2013-05-25: Session config complete.

• 2013-05-16: Link subsystem complete.

• 2013-05-09: User subsystem complete.

• 2013-05-08: Session configuration and creation, with login and logout works.

• 2013-05-03: The Python object spotify.lib is a working CFFI wrapper around the entire libspotify 12 API.
This will be the foundation for more pythonic APIs. The library currently works on CPython 2.7, 3.3 and PyPy
2.

6.2.18 v1.x series

See the pyspotify 1.x changelog.

6.3 Contributing

Contributions to pyspotify are welcome! Here are some tips to get you started hacking on pyspotify and contributing
back your patches.

46 Chapter 6. About

http://pyspotify.readthedocs.io/en/v1.x-develop/changes/

pyspotify, Release 2.1.4

6.3.1 Development setup

1. Make sure you have the following Python versions installed:

• CPython 2.7

• CPython 3.5

• CPython 3.6

• CPython 3.7

• PyPy2.7 6.0+

• PyPy3.5 6.0+

If you’re on Ubuntu, the Dead Snakes PPA has packages of both old and new Python versions.

2. Install the following with development headers: Python, libffi, and libspotify.

On Debian/Ubuntu, make sure you have apt.mopidy.com in your APT sources to get the libspotify package, then
run:

sudo apt-get install python-all-dev python3-all-dev libffi-dev libspotify-dev

3. Create and activate a virtualenv:

virtualenv ve
source ve/bin/activate

4. Install development dependencies:

pip install -e ".[dev]

5. Run tests.

For a quick test suite run, using the virtualenv’s Python version:

py.test

For a complete test suite run, using all the Python implementations:

tox

6. For some more development task helpers, install invoke:

pip install invoke

To list available tasks, run:

invoke --list

For example, to run tests on any file change, run:

invoke test --watch

Or, to build docs when any file changes, run:

invoke docs --watch

See the file tasks.py for the task definitions.

6.3. Contributing 47

https://launchpad.net/~fkrull/+archive/deadsnakes
https://apt.mopidy.com/

pyspotify, Release 2.1.4

6.3.2 Submitting changes

• Code should be accompanied by tests and documentation. Maintain our excellent test coverage.

• Follow the existing code style, especially make sure flake8 does not complain about anything.

• Write good commit messages. Here’s three blog posts on how to do it right:

– Writing Git commit messages

– A Note About Git Commit Messages

– On commit messages

• One branch per feature or fix. Keep branches small and on topic.

• Send a pull request to the v2.x/master branch. See the GitHub pull request docs for help.

6.3.3 Additional resources

• Issue tracker

• GitHub documentation

• libspotify downloads and documentation archive

48 Chapter 6. About

http://365git.tumblr.com/post/3308646748/writing-git-commit-messages
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://who-t.blogspot.ch/2009/12/on-commit-messages.html
https://help.github.com/articles/using-pull-requests
https://github.com/jodal/pyspotify/issues
https://help.github.com/
https://mopidy.github.io/libspotify-archive/

PYTHON MODULE INDEX

s
spotify, 21

49

pyspotify, Release 2.1.4

50 Python Module Index

INDEX

Symbols
__version__ (in module spotify), 21

A
Album (class in spotify), 25
AlbumBrowser (class in spotify), 25
AlbumType (class in spotify), 26
AlsaSink (class in spotify), 31
Artist (class in spotify), 26
ArtistBrowser (class in spotify), 26
ArtistBrowserType (class in spotify), 26
AudioBufferStats (class in spotify), 31
AudioFormat (class in spotify), 31

B
Bitrate (class in spotify), 31

C
Config (class in spotify), 22
Connection (class in spotify.connection), 23
ConnectionRule (class in spotify), 23
ConnectionState (class in spotify), 23
ConnectionType (class in spotify), 23

E
Error, 21
ErrorType (class in spotify), 21
EventEmitter (class in spotify.utils), 33
EventLoop (class in spotify), 23

F
ffi (spotify attribute), 32

G
get_libspotify_api_version() (in module spotify),

21
get_libspotify_build_id() (in module spotify), 21
get_with_fixed_buffer() (in module spotify.utils),

34
get_with_growing_buffer() (in module spotify.utils),

34

I
id (spotify.PlaylistFolder attribute), 29
Image (class in spotify), 26
ImageFormat (class in spotify), 27
ImageSize (class in spotify), 27
InboxPostResult (class in spotify), 30
IntEnum (class in spotify.utils), 33

L
lib (spotify attribute), 32
LibError, 21
Link (class in spotify), 24
LinkType (class in spotify), 24
load() (in module spotify.utils), 34

M
make_enum() (in module spotify.utils), 33
module

spotify, 21

N
name (spotify.PlaylistFolder attribute), 29

O
Offline (class in spotify.offline), 24
OfflineSyncStatus (class in spotify), 24

P
Player (class in spotify.player), 30
PlayerState (class in spotify.player), 30
Playlist (class in spotify), 27
PlaylistContainer (class in spotify), 28
PlaylistContainerEvent (class in spotify), 29
PlaylistEvent (class in spotify), 27
PlaylistFolder (class in spotify), 29
PlaylistOfflineStatus (class in spotify), 29
PlaylistPlaceholder (class in spotify), 29
PlaylistTrack (class in spotify), 29
PlaylistType (class in spotify), 29
PlaylistUnseenTracks (class in spotify), 29
PortAudioSink (class in spotify), 31

51

pyspotify, Release 2.1.4

Python Enhancement Proposals
PEP 386, 21
PEP 435, 33

S
samples (spotify.AudioBufferStats attribute), 31
SampleType (class in spotify), 31
ScrobblingState (class in spotify), 30
Search (class in spotify), 27
SearchPlaylist (class in spotify), 27
SearchType (class in spotify), 27
Sequence (class in spotify.utils), 34
serialized() (in module spotify), 33
Session (class in spotify), 22
SessionEvent (class in spotify), 22
Social (class in spotify.social), 30
SocialProvider (class in spotify), 30
spotify

module, 21
stutter (spotify.AudioBufferStats attribute), 31

T
Timeout, 22
to_bytes() (in module spotify.utils), 34
to_bytes_or_none() (in module spotify.utils), 34
to_char() (in module spotify.utils), 35
to_char_or_null() (in module spotify.utils), 35
to_country() (in module spotify.utils), 35
to_country_code() (in module spotify.utils), 35
to_unicode() (in module spotify.utils), 34
to_unicode_or_none() (in module spotify.utils), 34
Toplist (class in spotify), 30
ToplistRegion (class in spotify), 30
ToplistType (class in spotify), 30
Track (class in spotify), 25
TrackAvailability (class in spotify), 25
TrackOfflineStatus (class in spotify), 25
type (spotify.PlaylistFolder attribute), 29

U
User (class in spotify), 25

52 Index

	WARNING: This library no longer works
	Introduction
	Project resources
	User’s guide
	Installation
	Debian/Ubuntu: Install from apt.mopidy.com
	Arch Linux: Install from AUR
	macOS: Install wheel package from PyPI with pip
	macOS: Install from Homebrew
	Install from source
	libspotify
	Debian/Ubuntu
	Arch Linux
	macOS

	Build tools
	Debian/Ubuntu
	Arch Linux
	macOS

	pyspotify

	Quickstart
	Application keys
	Creating a session
	Text encoding
	Login and event processing
	Logging
	Browsing metadata
	Downloading cover art
	Searching
	Playlist management
	Playing music
	Thread safety

	API reference
	API reference
	Error handling
	Configuration
	Sessions
	Event loop
	Connection
	Offline sync
	Links
	Users
	Tracks
	Albums
	Artists
	Images
	Search
	Playlists
	Toplists
	Inbox
	Social
	Player
	Audio
	Audio sinks
	Internal API
	libspotify CFFI interface
	Thread safety utils
	Event emitter utils
	Enumeration utils
	Object loading utils
	Sequence utils
	String conversion utils
	Country code utils

	About
	Authors
	Changelog
	v2.1.4 (2022-06-15)
	v2.1.3 (2019-12-29)
	v2.1.2 (2019-12-10)
	v2.1.1 (2019-11-17)
	v2.1.0 (2019-07-08)
	v2.0.5 (2015-09-22)
	v2.0.4 (2015-09-15)
	v2.0.3 (2015-09-05)
	v2.0.2 (2015-08-06)
	v2.0.1 (2015-07-20)
	v2.0.0 (2015-06-01)
	Dependency changes
	ALSA sink

	v2.0.0b5 (2015-05-09)
	Minor changes
	Bug fixes

	v2.0.0b4 (2015-01-13)
	Minor changes
	Bug fixes

	v2.0.0b3 (2014-05-04)
	Refactoring: Connection cleanup
	Refactoring: position vs index
	Minor changes

	v2.0.0b2 (2014-04-29)
	Bug fixes
	Minor changes

	v2.0.0b1 (2014-04-24)
	Feature: Thread safety
	Feature: Event loop
	Feature: Audio playback
	Refactoring: Remove global state
	Refactoring: Consistent naming of Session members
	Refactoring: Consistent naming of threading.Event objects
	Refactoring: Change how to register image load listeners
	Bug fixes
	Minor changes

	v2.0.0a1 (2014-02-14)
	Development milestones

	v1.x series

	Contributing
	Development setup
	Submitting changes
	Additional resources

	Python Module Index
	Index

